1,191 research outputs found

    Authentication protocol for an IoT-enabled LTE networks

    Get PDF
    The Evolved Packet System-based Authentication and Key Agreement (EPS-AKA) protocol of the long-term evolution (LTE) network does not support Internet of Things (IoT) objects and has several security limitations, including transmission of the object’s (user/device) identity and key set identifier in plaintext over the network, synchronization, large overhead, limited identity privacy, and security attack vulnerabilities. In this article, we propose a new secure and efficient AKA protocol for the LTE network that supports secure and efficient communications among various IoT devices as well as among the users. Analysis shows that our protocol is secure, efficient, and privacy preserved, and reduces bandwidth consumption during authentication

    A fast parallel algorithm for special linear systems of equations using processor arrays with reconfigurable bus systems

    Get PDF
    A parallel algorithm using Processor Arrays with Reconfigurable Bus Systems has been designed to solve dense Symmetric Positive Definite (SPD) systems of equations Ax = b. The key content of this report is the parallelisation of the algorithm by Delosme & Ipson [8]. In order to design a parallel algorithm for PARBS, many procedures involved in [8] are handled in a slightly different way. The parallel time and processor’s complexity of each step of the algorithm is calculated. The parallel time complexity is O(n) using 2n × 2n × 5n number of Processing Elements

    A constant time parallel algorithm for the triangularization of a sparse matrix using CD-PARBS

    Get PDF
    An algorithm for the triangularization of a matrix whose graph is a directed acyclic graph, popularly known as dag, is presented. One of the algorithms for obtaining this special form has been given by Sargent and Westerberg. Their approach is practically good but sequential in nature and cannot be parallelised easily. In this work we present a parallel algorithm which is based on the observation that, if we find the transitive closure matrix of a directed acyclic graph, count the number of entries in each row, sort them in the ascending order of their values and rank them accordingly, we get a lower triangular matrix. We show that all these operations can be done using 3-d CD- PARBS(Complete Directed PARBS) in constant time. The same approach can be used for the block cases, producing the same relabelling as produced by Tarjan’s algorithm, in constant time. To the best of our knowledge, it is the first approach to solve such problems using directed PARBS

    An efficient parallel algorithm for the all pairs shortest path problem using processor arrays with reconfigurable bus systems

    Get PDF
    The all pairs shortest path problem is a class of the algebraic path problem. Many parallel algorithms for the solution of this problem appear in the literature. One of the efficient parallel algorithms on W-RAM model is given by Kucera [17]. Though efficient, algorithms written for the W-RAM model of parallel computation are too idealistic to be implemented on the current hardware. In this report we present an efficient parallel algorithm for the solution of this problem using a relatively new model of parallel computing, Processor Arrays with Reconfigurable Bus Systems. The parallel time complexity of this algorithm is O(log2 n) and processors complexity is n2 × n × n

    Implementation of a parallel algorithm for the symmetric positive definite systems of equations on the CRAY-T3E

    Get PDF
    A parallel algorithm for the solution of dense Symmetric Positive Definite (SPD) systems of equations Ax = b has been designed for the implementation on the CRAY T3E. One of the numerically stable methods for the solution of this system is proposed by Delosme & Ipsen [3]. In order to implement this algorithm on the CRAY T3E, we require to handle the procedures involved in a slightly different way. These implementation issues are discussed in detail. The actual timings for different communication schemes, on different sets of data values and varying number of processors have been tested and reported

    EasySMS: a protocol for end to end secure transmission of SMS

    Get PDF
    Nowadays, short message service (SMS) is being used in many daily life applications, including healthcare monitoring, mobile banking, mobile commerce, and so on. But when we send an SMS from one mobile phone to another, the information contained in the SMS transmit as plain text. Sometimes this information may be confidential like account numbers, passwords, license numbers, and so on, and it is a major drawback to send such information through SMS while the traditional SMS service does not provide encryption to the information before its transmission. In this paper, we propose an efficient and secure protocol called EasySMS, which provides end-to-end secure communication through SMS between end users. The working of the protocol is presented by considering two different scenarios. The analysis of the proposed protocol shows that this protocol is able to prevent various attacks, including SMS disclosure, over the air modification, replay attack, man-in-the-middle attack, and impersonation attack. The EasySMS protocol generates minimum communication and computation overheads as compared with existing SMSSec and PK-SIM protocols. On an average, the EasySMS protocol reduces 51% and 31% of the bandwidth consumption and reduces 62% and 45% of message exchanged during the authentication process in comparison to SMSSec and PK-SIM protocols respectively. Authors claim that EasySMS is the first protocol completely based on the symmetric key cryptography and retain original architecture of cellular network
    • …
    corecore